zur Startseite der DMG-Lib
Home  · Übersicht  · Kontakt  ·

Erweiterte Suche   Mechanismensuche

Metodología para la predicción de la estabilidad dinámica en el mecanizado de alta velocidad de suelos delgados

thumbnail
Dokument öffnen (benötigt JavaScript)   Dokument öffnen

Allgemeine Angaben

Autor Campa Gómez, Francisco Javier
Erschienen  Universidad del País Vasco, Bilbao, 2009
Ausgabe  
Umfang  
ISBN
Kurzbeschreibung Metodología para la predicción de la estabilidad dinámica en el mecanizado de alta velocidad de suelos delgados.
Metodología para la predicción de la estabilidad dinámica en el mecanizado de alta velocidad de suelos delgados.Tesis doctoral desarrollada en la Universidad del País Vasco por Francisco Javier Campa.
Sammlungen
Wissenschaftliche Schriften
ab 2000
Bilder
 
Distribution of cutting forces on a cutting edge with a lead angle of 90º and 45º
Ansicht vergrößern
Stability lobes diagram, spindle speed-chatter frequency diagram and spindle speed-phase diagrama
Ansicht vergrößern
Relation between the obtained critical depth of cut and the estimated one in several machine tools
Ansicht vergrößern
Tolerance in the estimation of the stability lobes
Ansicht vergrößern
Influence of the tool vibration over the real chip thickness.
Ansicht vergrößern
Flip and Hopf lobes in the stability diagram of a milling with a tool with 2 cutting edges
Ansicht vergrößern
Frequency response functions measured at the tool tip
Ansicht vergrößern
Stability lobes in full immersion milling for 4 types of toolholder.
Ansicht vergrößern
Milling strategies for industrial marots machining with thin walls
Ansicht vergrößern
Materials used in the Boeing 77 of 2003 and in the 787 Dreamliner
Ansicht vergrößern
Evolution of the material in the monolithic components machining process
Ansicht vergrößern
Machining chatter marks in a thin floor and a thin wall of monolithic parts
Ansicht vergrößern
Main parameters in the study of the oblique cutting mechanics
Ansicht vergrößern
Diagram of the basic parameters of milling
Ansicht vergrößern
Discretization of an end mill cutting edge in differential elements and representation of the cutting forces
Ansicht vergrößern
Cutting forces on a differential element of the cutting edge of a bullnose end mill
Ansicht vergrößern
Cutting forces in milling on a tool with 9 tooth and corresponding Fourier analysis
Ansicht vergrößern
Influence of the radial depth of cut over the harmonic content of the Fourier spectrum in a milling of Aluminum 7075T6
Ansicht vergrößern
Influence of the helix angle on the shape of the cutting forces and the harmonic content of the Fourier analysis
Ansicht vergrößern
Comparison of the Frequency Response Functions experimentally measured at the tool tip for a milling machine structure, and two end mills with an overhang-diameter relation of 4:1 and 7:1
Ansicht vergrößern
Example of the influence of the helix angle on the final geometry of a walll milled with and end mill of 4 teeth and an helix angle of 45º.
Ansicht vergrößern
Chip width in a turning operation and in a milling operation with a tool with inserts.
Ansicht vergrößern
Simulation in time domain of the stabilizing effect of the nonlinearities that appear during a unstable milling
Ansicht vergrößern
Representation of the damping effect.
Ansicht vergrößern
Chip thickness variation, the cutting speed, the helix angle and the shearing cutting coefficients in a ball end mill of diameter of 12 mm
Ansicht vergrößern
Chatter vibration marks in an Inconel 718 turned part and a milled  L type part of Aluminum 7075.
Ansicht vergrößern
Frequency content of the signal of an accelerometer in a unstable milling due to regenerative chatter
Ansicht vergrößern
Fourier spectrum, displacement vs. time, synchronized signal with the tooth passing frequency and Pincaré diagram.
Ansicht vergrößern
Fourier spectrum, displacement vs. time, synchronized signal and Poincare diagram of a stable milling vibration signal.
Ansicht vergrößern
Fourier spectrum, displacement vs. time, synchronized signal and Poincare diagram.
Ansicht vergrößern
Vacuum fixtres for the routing and drilling of components for the aerobautical industry.  Active bed-shape fixture based Universal Holding Fixtures from Kostyrka
Ansicht vergrößern
Conventional end mill, end mill with variable pitch, and end mill with variable helix angle
Ansicht vergrößern
Example of reduction of the vibration severity in and 87% by means of a (SSSV)
Ansicht vergrößern
Stability lobes diagram: Influence of the relation 'chatter frequency-tooth passing frequency'
Ansicht vergrößern
Influence of the process damping effect on the stability lobes diagram
Ansicht vergrößern
1 Degree of freedom model for orthogonal turning.
Ansicht vergrößern
Influence of the cutting mode on the stability lobes diagrams
Ansicht vergrößern
Influence of the milling mode on the stability diagrams for a system
Ansicht vergrößern
Transformation of the FRFs matrix in cartesian coordinates to the loacl axis of the tool, depedent on the feed direction.
Ansicht vergrößern
Variation of the stability lobes diagrama shape with the feed direction: Comparison of the lobes from two designs of a universal milling machine
Ansicht vergrößern
Left) Polar diagram 'Critical depth of cut-Feed direction. Right) Optimized milling strategy based on the use of the polar diagram.
Ansicht vergrößern
Influence of the workpiece material on the stability lobes
Ansicht vergrößern
Influence of the number of teeth of a tool in the stability lobes diagram
Ansicht vergrößern
Effect of the helix angle on the stability lobes shape.
Ansicht vergrößern
Effect of maintaining the stiffness while varying the mass
Ansicht vergrößern
Influence of the variation of the stiffness while making the modal mass constant
Ansicht vergrößern
Effect of a variable damping on the FRFs and the stability lobes
Ansicht vergrößern
Variation of the stability lobes of a universal milling machine inside the workspace
Ansicht vergrößern
First modal frequency vs. spindle speed
Ansicht vergrößern
Stability diagram calculated with the FRF measured at 0 rpm and at several spindle speeds.
Ansicht vergrößern
Jump-to-jump strategy on a thin wall and detail of the difference in height of the tool
Ansicht vergrößern
Fourier spectrum of an unstable milling of a thin floor
Ansicht vergrößern
Fourier spectrum of an unstable milling
Ansicht vergrößern
Surface of a thin wall after an unstable and a stable milling
Ansicht vergrößern
Steps on the surface of the thin floor
Ansicht vergrößern
Influence of the dynamic displacements in Z direction on the chip thickness.
Ansicht vergrößern
Representation of two effects to consider in the study of chatter when milling thin floors: a) Cut of the secondary edge due to the penetration of the edge into the part. b) Interferences between the part and the edges out of the cutting area.
Ansicht vergrößern
Stable milling of a part flexible in the tool axis direction: vibration and tooth impacts go in phase and the surface is free of marks.
Ansicht vergrößern
Unstable milling due to period doubling chatter
Ansicht vergrößern
Unstable milling due to period doubling chatter. Part II
Ansicht vergrößern
Unstable milling due to period doubling chatter
Ansicht vergrößern
Unstable milling due to period doubling chatter
Ansicht vergrößern
Unstable milling due to period doubling chatter
Ansicht vergrößern
Projection of the displacements in x,y and z over the chip thickness
Ansicht vergrößern
Direction of the forces on the cutting edge of an insert and a bull nose end mill.
Ansicht vergrößern
Stability lobes diagram and chatter frequencies diagram for 1 and 3 harmonics
Ansicht vergrößern
Stability lobes and frequency-velocity for 5 and 15 harmonics
Ansicht vergrößern
Computational time as a function of the number of harmonics
Ansicht vergrößern
Stability lobes diagram for 0, 1 and 5 harmonics.
Ansicht vergrößern
Chatter frequencies diagram for 0,1,3,5 and 15 armonics
Ansicht vergrößern
Comparison of methods to obtain stability diagrams: Chebyshev, single-frequency and multi-frequency.
Ansicht vergrößern
Comparison of computational times between some solutions.
Ansicht vergrößern
Aproximation of [Altintas, 2001] for circular inserts.
Ansicht vergrößern
Linearization of the cutting edge lead angle for each axial depth of cut
Ansicht vergrößern
Parameters used in the averaging of the lead angle and the cutting coefficients
Ansicht vergrößern
Variation of the section of the chip as a function of the dynamic chip thickness
Ansicht vergrößern
Variation of the averaged cutting edge lead angle
Ansicht vergrößern
Variation of the cutting edge lead angle averaged
Ansicht vergrößern
Left) Experimental device and modal parameters. Right) Stability diagram and experimental results
Ansicht vergrößern
Mean roughness, surface and Fourier spectrum of the tests performed. Part I
Ansicht vergrößern
Mean roughness, surface and Fourier spectrum of the tests performed. Part II
Ansicht vergrößern
Second experimental device and corresponding modal parameters
Ansicht vergrößern
Results of the comparison of averaging methods: Method 3, method 2 and method 1
Ansicht vergrößern
Influence  on the stability diagram of an error of 10% on the cutting coefficients, the relative damping and the stiffness
Ansicht vergrößern
Solution of the averaging method 3 when the mode is in axial direction or in radial direction
Ansicht vergrößern
Algorithm for the obtention of a tridimensional lobes diagram. Part I
Ansicht vergrößern
Algorithm for the obtention of a tridimensional lobes diagram
Ansicht vergrößern
Stability diagram and stable spindle speeds
Ansicht vergrößern
Contour stability diagram and colorbar
Ansicht vergrößern
Angular acceleration of two spindles with and without position encoder: Faemat (red) and Kessler (blue)
Ansicht vergrößern
Critical depth of cut- Bulk of material diagram.
Ansicht vergrößern
Critical depth of cut-Dynamic stiffness diagram for several radial depths of cut.
Ansicht vergrößern
Detail of the aluminum plate and the testprobe.
Ansicht vergrößern
3 axis machining center Kondia HS 1000.
Ansicht vergrößern
Dominant modes of the testprobe and FRFs
Ansicht vergrößern
Stability diagrams of the milling of the testpart
Ansicht vergrößern
Experimental results: stable, unstable and slightly unstable
Ansicht vergrößern
Accelerometer signal and Fourier spectrums in points 1, 3 and 5
Ansicht vergrößern
Accelerometer signal and Fourier spectrums in points 1, 3 and 5
Ansicht vergrößern
Ampliation of the stability diagrama at a depth of cut of 4 mm.
Ansicht vergrößern
Accelerometer signal in the milling of the testpart
Ansicht vergrößern
Surface after an unstable milling.
Ansicht vergrößern
Geometry and dimensions of the testpart 'Aerosfin'.
Ansicht vergrößern
Milling strategy tested in the thin floor cutting.
Ansicht vergrößern
Dynamometric plate Kistler© 9255B and amplifier Kistler© 5017B
Ansicht vergrößern
Measurement of the FRF of the floor
Ansicht vergrößern
Surface roughness measurement and section made to the testpart.
Ansicht vergrößern
Left) Evolution of the first modal frequencies in the 8 steps.Right) Mesh of the part
Ansicht vergrößern
a) Detail of the nodes used for the comparison. b) Gzz in pints 1,2,3. c) Gyy in points 1,2,3. d) Gzz in pints 4,5,6. e) Gyy in points 4,5,6.
Ansicht vergrößern
Left) Lobes obhtained from the Gzz in points 1-3 and from points 4-6. Right) Comparisonm of the lobes calculated from Gzz in points 1 and 4 and the ones calculated considering Gxx, Gyy and the crossed FRFs in 1 and 4.
Ansicht vergrößern
Distribution of the relative dampings calculated by modal fitting.
Ansicht vergrößern
Evolution of the modulus of the FRFs (m/N) durinf the milling of the testpart
Ansicht vergrößern
Comparison between the FRFs calculated by MEF (red) and the experimentally obtained ones (blue).
Ansicht vergrößern
Stability diagrams: From experimantal FRFs (blue) and calculated from FRFs estimated by FEM (red).
Ansicht vergrößern
Final surface of the milled testpat with a initial bulk of material of 5 mm at 24.000 rpm: Mean roughness Ra in microns and detail of the marks.
Ansicht vergrößern
Final surface of the testpart with a bulk of material of 5 mm and machined varying the spindle speed: mean roughness Ra and detail of the marks.
Ansicht vergrößern
Left) Evolution of the experimental FRF. Right) Stability diagram for the machining with a bulk of material of 6 mm.
Ansicht vergrößern
Final surface of the test milled woth a bluk of material of 6 mm at 24000 rpm: mean roughness Ra in microns and detail of the marks.
Ansicht vergrößern
Final surface of the test with a bulk of material of 6 mm and milled varying the spindle speed: mean roughness Ra and detail of the marks.
Ansicht vergrößern
Mean roughness Ra measured in each test part with the maximum deviation with respect to that value
Ansicht vergrößern
Influence of an error ef 10% in the relative damping, the stiffness and the cutting coefficients
Ansicht vergrößern
Critical depth of cut-Bulk of material diagram in the step P4 of the Aerosfin test part.
Ansicht vergrößern
Final surface of the part machined with a bulk of material of 8 mm at 24000 rpm: mean roughness Ra in microns and detail of the marks.
Ansicht vergrößern
Final surface of the part milled with a bulk of material of 9 mm at 24000 rpm.
Ansicht vergrößern
Final surface of the test part in the step 4 with a bulk of material of 5 mm, 6 mm, 8 mm and 9 mm.
Ansicht vergrößern
Critical depth of cut-Dynamic stiffness diagram
Ansicht vergrößern
Verknüpfte Datensätze
Bilder: Final surface of the part milled with a bulk of material of 9 mm at 24000 rpm.
Permanentlinks
DMG-Lib FaviconDMG-Lib https://www.dmg-lib.org/dmglib/handler?docum=13367009
Europeana FaviconEuropeana  http://www.europeana.eu/portal/record/2020801/dmglib_handler_docum_13367009.html
Datenbereitsteller
UBCUniv. Baskenland  http://www.ehu.es/compmech/welcome/Home.html
Verwaltungsinformationen
Publikationsdatum 2009

×