Accueil DMG-Lib
Accueil  · Plan du site  · Contact  ·

Recherche avancée   Recherche de mécanisme

Metodología para la predicción de la estabilidad dinámica en el mecanizado de alta velocidad de suelos delgados

thumbnail
Dokument öffnen (benötigt JavaScript)   Ouvrir le document

Informations générales

Auteur Campa Gómez, Francisco Javier
Publié  Universidad del País Vasco, Bilbao, 2009
Edition  
Extension  
ISBN
Abstract Metodología para la predicción de la estabilidad dinámica en el mecanizado de alta velocidad de suelos delgados.
Metodología para la predicción de la estabilidad dinámica en el mecanizado de alta velocidad de suelos delgados.Tesis doctoral desarrollada en la Universidad del País Vasco por Francisco Javier Campa.
Collections
Publications scientifiques
2000 et après
Images
 
Distribution of cutting forces on a cutting edge with a lead angle of 90º and 45º
Cliquez pour agrandir
Stability lobes diagram, spindle speed-chatter frequency diagram and spindle speed-phase diagrama
Cliquez pour agrandir
Relation between the obtained critical depth of cut and the estimated one in several machine tools
Cliquez pour agrandir
Tolerance in the estimation of the stability lobes
Cliquez pour agrandir
Influence of the tool vibration over the real chip thickness.
Cliquez pour agrandir
Flip and Hopf lobes in the stability diagram of a milling with a tool with 2 cutting edges
Cliquez pour agrandir
Frequency response functions measured at the tool tip
Cliquez pour agrandir
Stability lobes in full immersion milling for 4 types of toolholder.
Cliquez pour agrandir
Milling strategies for industrial marots machining with thin walls
Cliquez pour agrandir
Materials used in the Boeing 77 of 2003 and in the 787 Dreamliner
Cliquez pour agrandir
Evolution of the material in the monolithic components machining process
Cliquez pour agrandir
Machining chatter marks in a thin floor and a thin wall of monolithic parts
Cliquez pour agrandir
Main parameters in the study of the oblique cutting mechanics
Cliquez pour agrandir
Diagram of the basic parameters of milling
Cliquez pour agrandir
Discretization of an end mill cutting edge in differential elements and representation of the cutting forces
Cliquez pour agrandir
Cutting forces on a differential element of the cutting edge of a bullnose end mill
Cliquez pour agrandir
Cutting forces in milling on a tool with 9 tooth and corresponding Fourier analysis
Cliquez pour agrandir
Influence of the radial depth of cut over the harmonic content of the Fourier spectrum in a milling of Aluminum 7075T6
Cliquez pour agrandir
Influence of the helix angle on the shape of the cutting forces and the harmonic content of the Fourier analysis
Cliquez pour agrandir
Comparison of the Frequency Response Functions experimentally measured at the tool tip for a milling machine structure, and two end mills with an overhang-diameter relation of 4:1 and 7:1
Cliquez pour agrandir
Example of the influence of the helix angle on the final geometry of a walll milled with and end mill of 4 teeth and an helix angle of 45º.
Cliquez pour agrandir
Chip width in a turning operation and in a milling operation with a tool with inserts.
Cliquez pour agrandir
Simulation in time domain of the stabilizing effect of the nonlinearities that appear during a unstable milling
Cliquez pour agrandir
Representation of the damping effect.
Cliquez pour agrandir
Chip thickness variation, the cutting speed, the helix angle and the shearing cutting coefficients in a ball end mill of diameter of 12 mm
Cliquez pour agrandir
Chatter vibration marks in an Inconel 718 turned part and a milled  L type part of Aluminum 7075.
Cliquez pour agrandir
Frequency content of the signal of an accelerometer in a unstable milling due to regenerative chatter
Cliquez pour agrandir
Fourier spectrum, displacement vs. time, synchronized signal with the tooth passing frequency and Pincaré diagram.
Cliquez pour agrandir
Fourier spectrum, displacement vs. time, synchronized signal and Poincare diagram of a stable milling vibration signal.
Cliquez pour agrandir
Fourier spectrum, displacement vs. time, synchronized signal and Poincare diagram.
Cliquez pour agrandir
Vacuum fixtres for the routing and drilling of components for the aerobautical industry.  Active bed-shape fixture based Universal Holding Fixtures from Kostyrka
Cliquez pour agrandir
Conventional end mill, end mill with variable pitch, and end mill with variable helix angle
Cliquez pour agrandir
Example of reduction of the vibration severity in and 87% by means of a (SSSV)
Cliquez pour agrandir
Stability lobes diagram: Influence of the relation 'chatter frequency-tooth passing frequency'
Cliquez pour agrandir
Influence of the process damping effect on the stability lobes diagram
Cliquez pour agrandir
1 Degree of freedom model for orthogonal turning.
Cliquez pour agrandir
Influence of the cutting mode on the stability lobes diagrams
Cliquez pour agrandir
Influence of the milling mode on the stability diagrams for a system
Cliquez pour agrandir
Transformation of the FRFs matrix in cartesian coordinates to the loacl axis of the tool, depedent on the feed direction.
Cliquez pour agrandir
Variation of the stability lobes diagrama shape with the feed direction: Comparison of the lobes from two designs of a universal milling machine
Cliquez pour agrandir
Left) Polar diagram 'Critical depth of cut-Feed direction. Right) Optimized milling strategy based on the use of the polar diagram.
Cliquez pour agrandir
Influence of the workpiece material on the stability lobes
Cliquez pour agrandir
Influence of the number of teeth of a tool in the stability lobes diagram
Cliquez pour agrandir
Effect of the helix angle on the stability lobes shape.
Cliquez pour agrandir
Effect of maintaining the stiffness while varying the mass
Cliquez pour agrandir
Influence of the variation of the stiffness while making the modal mass constant
Cliquez pour agrandir
Effect of a variable damping on the FRFs and the stability lobes
Cliquez pour agrandir
Variation of the stability lobes of a universal milling machine inside the workspace
Cliquez pour agrandir
First modal frequency vs. spindle speed
Cliquez pour agrandir
Stability diagram calculated with the FRF measured at 0 rpm and at several spindle speeds.
Cliquez pour agrandir
Jump-to-jump strategy on a thin wall and detail of the difference in height of the tool
Cliquez pour agrandir
Fourier spectrum of an unstable milling of a thin floor
Cliquez pour agrandir
Fourier spectrum of an unstable milling
Cliquez pour agrandir
Surface of a thin wall after an unstable and a stable milling
Cliquez pour agrandir
Steps on the surface of the thin floor
Cliquez pour agrandir
Influence of the dynamic displacements in Z direction on the chip thickness.
Cliquez pour agrandir
Representation of two effects to consider in the study of chatter when milling thin floors: a) Cut of the secondary edge due to the penetration of the edge into the part. b) Interferences between the part and the edges out of the cutting area.
Cliquez pour agrandir
Stable milling of a part flexible in the tool axis direction: vibration and tooth impacts go in phase and the surface is free of marks.
Cliquez pour agrandir
Unstable milling due to period doubling chatter
Cliquez pour agrandir
Unstable milling due to period doubling chatter. Part II
Cliquez pour agrandir
Unstable milling due to period doubling chatter
Cliquez pour agrandir
Unstable milling due to period doubling chatter
Cliquez pour agrandir
Unstable milling due to period doubling chatter
Cliquez pour agrandir
Projection of the displacements in x,y and z over the chip thickness
Cliquez pour agrandir
Direction of the forces on the cutting edge of an insert and a bull nose end mill.
Cliquez pour agrandir
Stability lobes diagram and chatter frequencies diagram for 1 and 3 harmonics
Cliquez pour agrandir
Stability lobes and frequency-velocity for 5 and 15 harmonics
Cliquez pour agrandir
Computational time as a function of the number of harmonics
Cliquez pour agrandir
Stability lobes diagram for 0, 1 and 5 harmonics.
Cliquez pour agrandir
Chatter frequencies diagram for 0,1,3,5 and 15 armonics
Cliquez pour agrandir
Comparison of methods to obtain stability diagrams: Chebyshev, single-frequency and multi-frequency.
Cliquez pour agrandir
Comparison of computational times between some solutions.
Cliquez pour agrandir
Aproximation of [Altintas, 2001] for circular inserts.
Cliquez pour agrandir
Linearization of the cutting edge lead angle for each axial depth of cut
Cliquez pour agrandir
Parameters used in the averaging of the lead angle and the cutting coefficients
Cliquez pour agrandir
Variation of the section of the chip as a function of the dynamic chip thickness
Cliquez pour agrandir
Variation of the averaged cutting edge lead angle
Cliquez pour agrandir
Variation of the cutting edge lead angle averaged
Cliquez pour agrandir
Left) Experimental device and modal parameters. Right) Stability diagram and experimental results
Cliquez pour agrandir
Mean roughness, surface and Fourier spectrum of the tests performed. Part I
Cliquez pour agrandir
Mean roughness, surface and Fourier spectrum of the tests performed. Part II
Cliquez pour agrandir
Second experimental device and corresponding modal parameters
Cliquez pour agrandir
Results of the comparison of averaging methods: Method 3, method 2 and method 1
Cliquez pour agrandir
Influence  on the stability diagram of an error of 10% on the cutting coefficients, the relative damping and the stiffness
Cliquez pour agrandir
Solution of the averaging method 3 when the mode is in axial direction or in radial direction
Cliquez pour agrandir
Algorithm for the obtention of a tridimensional lobes diagram. Part I
Cliquez pour agrandir
Algorithm for the obtention of a tridimensional lobes diagram
Cliquez pour agrandir
Stability diagram and stable spindle speeds
Cliquez pour agrandir
Contour stability diagram and colorbar
Cliquez pour agrandir
Angular acceleration of two spindles with and without position encoder: Faemat (red) and Kessler (blue)
Cliquez pour agrandir
Critical depth of cut- Bulk of material diagram.
Cliquez pour agrandir
Critical depth of cut-Dynamic stiffness diagram for several radial depths of cut.
Cliquez pour agrandir
Detail of the aluminum plate and the testprobe.
Cliquez pour agrandir
3 axis machining center Kondia HS 1000.
Cliquez pour agrandir
Dominant modes of the testprobe and FRFs
Cliquez pour agrandir
Stability diagrams of the milling of the testpart
Cliquez pour agrandir
Experimental results: stable, unstable and slightly unstable
Cliquez pour agrandir
Accelerometer signal and Fourier spectrums in points 1, 3 and 5
Cliquez pour agrandir
Accelerometer signal and Fourier spectrums in points 1, 3 and 5
Cliquez pour agrandir
Ampliation of the stability diagrama at a depth of cut of 4 mm.
Cliquez pour agrandir
Accelerometer signal in the milling of the testpart
Cliquez pour agrandir
Surface after an unstable milling.
Cliquez pour agrandir
Geometry and dimensions of the testpart 'Aerosfin'.
Cliquez pour agrandir
Milling strategy tested in the thin floor cutting.
Cliquez pour agrandir
Dynamometric plate Kistler© 9255B and amplifier Kistler© 5017B
Cliquez pour agrandir
Measurement of the FRF of the floor
Cliquez pour agrandir
Surface roughness measurement and section made to the testpart.
Cliquez pour agrandir
Left) Evolution of the first modal frequencies in the 8 steps.Right) Mesh of the part
Cliquez pour agrandir
a) Detail of the nodes used for the comparison. b) Gzz in pints 1,2,3. c) Gyy in points 1,2,3. d) Gzz in pints 4,5,6. e) Gyy in points 4,5,6.
Cliquez pour agrandir
Left) Lobes obhtained from the Gzz in points 1-3 and from points 4-6. Right) Comparisonm of the lobes calculated from Gzz in points 1 and 4 and the ones calculated considering Gxx, Gyy and the crossed FRFs in 1 and 4.
Cliquez pour agrandir
Distribution of the relative dampings calculated by modal fitting.
Cliquez pour agrandir
Evolution of the modulus of the FRFs (m/N) durinf the milling of the testpart
Cliquez pour agrandir
Comparison between the FRFs calculated by MEF (red) and the experimentally obtained ones (blue).
Cliquez pour agrandir
Stability diagrams: From experimantal FRFs (blue) and calculated from FRFs estimated by FEM (red).
Cliquez pour agrandir
Final surface of the milled testpat with a initial bulk of material of 5 mm at 24.000 rpm: Mean roughness Ra in microns and detail of the marks.
Cliquez pour agrandir
Final surface of the testpart with a bulk of material of 5 mm and machined varying the spindle speed: mean roughness Ra and detail of the marks.
Cliquez pour agrandir
Left) Evolution of the experimental FRF. Right) Stability diagram for the machining with a bulk of material of 6 mm.
Cliquez pour agrandir
Final surface of the test milled woth a bluk of material of 6 mm at 24000 rpm: mean roughness Ra in microns and detail of the marks.
Cliquez pour agrandir
Final surface of the test with a bulk of material of 6 mm and milled varying the spindle speed: mean roughness Ra and detail of the marks.
Cliquez pour agrandir
Mean roughness Ra measured in each test part with the maximum deviation with respect to that value
Cliquez pour agrandir
Influence of an error ef 10% in the relative damping, the stiffness and the cutting coefficients
Cliquez pour agrandir
Critical depth of cut-Bulk of material diagram in the step P4 of the Aerosfin test part.
Cliquez pour agrandir
Final surface of the part machined with a bulk of material of 8 mm at 24000 rpm: mean roughness Ra in microns and detail of the marks.
Cliquez pour agrandir
Final surface of the part milled with a bulk of material of 9 mm at 24000 rpm.
Cliquez pour agrandir
Final surface of the test part in the step 4 with a bulk of material of 5 mm, 6 mm, 8 mm and 9 mm.
Cliquez pour agrandir
Critical depth of cut-Dynamic stiffness diagram
Cliquez pour agrandir
Linked items
Images: Final surface of the part milled with a bulk of material of 9 mm at 24000 rpm.
Permanent links
DMG-Lib FaviconDMG-Lib https://www.dmg-lib.org/dmglib/handler?docum=13367009
Europeana FaviconEuropeana  http://www.europeana.eu/portal/record/2020801/dmglib_handler_docum_13367009.html
Data provider
UBCUniv. Basque C.  http://www.ehu.es/compmech/welcome/Home.html
Administrative information
Time of publication 2009

×