Documenti accessibili
|
Informazioni generali |
Autore |
Luo, Youxin; Liu, Qiyuan; Che, Xiaoyi |
Pubblicato |
InTech Open Access Publisher, 2013
|
edizione |
|
Volume |
|
ISBN |
|
Abstract |
The pose of the moving platform in parallel
robots is possible thanks to the strong coupling, but it
consequently is very difficult to obtain its forward
displacement. Different methods establishing forward
displacement can obtain different numbers of variables
and different solving speeds with nonlinear equations.
The nonlinear equations with nine variables for forward
displacement in the general 6‐6 type parallel mechanism
were created using the rotation transformation matrix R ,
translation vector P and the constraint conditions of the
rod length. Given the problems of there being only one
solution and sometimes no convergence when solving
nonlinear equations with the Newton method and the
quasi‐Newton method, the Euler equation for free
rotation in a rigid body was applied to a chaotic system
by using chaos anti‐control and chaotic sequences were
produced. Combining the characteristics of the chaotic
sequence with the mathematical programming method, a
new mathematical programming method was put
forward, which was based on chaos anti‐control with the
aim of solving all real solutions of nonlinear equations for
forward displacement in the general 6‐6 type parallel
mechanism. The numerical example shows that the new
method has some positive characteristics such as that it
runs in the initial value range, it has fast convergence, it
can find all the possible real solutions that be found out
and it proves the correctness and validity of this method
when compared with other methods. |
|
|
|
International Journal of Advanced Robotic Systems
Autore: Ottaviano, Erika; Ceccarelli, Marco; Husty, Manfred; Yu, Sung-Hoon; Kim, Yong-Tae; Park, Chang-Woo; Hyun, Chang-Ho; Chen, Xiulong; Feng, Weiming; Sun, Xianyang; Gao, Qing; Grigorescu, Sorin M.; Pozna, Claudiu; Liu, Wanli; Zhankui, Wang; Guo, Meng; Fu, Guoyu; Zhang, Jin; Chen, Wenyuan; Peng, Fengchao; Yang, Pei; Chen, Chunlin; Ding, Rui; Yu, Junzhi; Yang, Qinghai; Tan, Min; Polden, Joseph; Pan, [...]
Pubblicato: 2004
|
|